Evaluating simulated effects of succession, fire, and harvest for LANDIS PRO forest landscape model
نویسندگان
چکیده
Forest landscape models are effective tools for exploring the effects of long-term and large-scale landscape processes such as seed dispersal, fire, and timber harvest. These models have been widely used for about a decade, and although significant advances in theory and technology have been incorporated into their development, evaluating the veracity of simulated results from forest landscape models remains challenging. In this study, we evaluated simulated forest succession and the effects of simulated fire and harvest by a spatially explicit forest landscape model (LANDIS PRO), initialized using forest inventory data (second and third tier data from years 2000 and 2010). Our results suggested that the initialized forest landscape constructed from the year 2000 forest inventory data adequately represented the forest composition and structure from that year. The simulated density and basal area from year 2010 adequately represented the forest inventory data from that year at landscape scales. Our results indicated that the simulated fire and harvest effects were comparable to the field data (measured density and basal area). Results in this study quantified the near-term reliability and confidence of the model as well as prediction uncertainties. ã 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Spatially Explicit and Stochastic Simulation of Forest- Landscape Fire Disturbance and Succession
Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit, stochastic model of forest l...
متن کاملCarbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions.
Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long-term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape-scale model of forest succession, wildfire, and C dynamics (LANDIS-II) to evaluate the effects of a changing climate (A2...
متن کاملLANDIS and forest landscape models
This paper provides contextual documentation of the LANDIS model development to provide a framework for the other papers in this special issue. The LANDIS model of forest landscape disturbance and succession was developed since the early 1990s as a research and management tool that optimizes the possible landscape extent (100 s ha to 1000 s km2), while providing mechanistic detail adequate for ...
متن کاملA Simulation Study of Forest Dynamics Under Multiple Harvest Regimes and Wind Disturbances in Southern Mississippi
Forests of the coastal plain region of the southern United States are unique in their productivity, biodiversity, and economic value. However, natural and anthropogenic disturbances may trigger forest age structure and spatial distribution variation. Detecting and predicting tree species distribution patterns can help to understand the dynamics of disturbances in order to develop adequate fores...
متن کاملA forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application
Predicting the long-term dynamics of forest systems depends on understanding multiple processes that often operate at vastly different scales. Disturbance and seed dispersal are landscape-scale phenomena and are spatially linked across the landscape. Ecosystem processes (e.g., growth and decomposition) have high annual and inter-specific variation and are generally quantified at the scale of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014